
Linux Command Line
For Engineers and Researchers

Marcos Borges, PhD

Linux Command Line

For Engineers and Researchers

Your feedback matters

Thank you for reading this free book about the Linux Command Line.

It was created with great care and many hours of work to make learning easier for

everyone. If you find any mistakes or have ideas to improve it, I would appreciate

your kind and constructive feedback.

If you enjoyed the book, please share it with those who love to learn!

Please remember that this book is free to share, but its content is copyrighted and

cannot be used for commercial purposes without permission.

Follow me to get notified when I publish new content:

• Website: marcosborges.phd

• LinkedIn: LinkedIn.com/in/MarcosBorgesPhD

• YouTube: YouTube.com/@MarcosBorgesPhD

Copyright © 2025 Marcos Borges, PhD. All rights reserved.

Updated on 8th October 2025.

i

https://marcosborges.phd?ref=book_linux_command_line
https://www.linkedin.com/in/marcosborgesphd/
https://www.youtube.com/@MarcosBorgesPhD

ii

About Marcos Borges, PhD

Hi, I’m Marcos Borges, a Senior Computer Vision Engineer decoding AI, Machine

Learning, Target Tracking, and Sensor Fusion for Autonomous Navigation.

For over two decades, I’ve navigated the same overwhelming tech landscape you’re

now, going from selling ice cream to earning a PhD in Applied Mathematics.

I learned what it takes to cut through the noise, build a standout portfolio, and

become a highly in-demand specialist.

Now, I’m dedicated to helping engineers move beyond surface-level knowledge so

they can build a legacy of impact, not just a career.

Explore my work and projects at marcosborges.phd.

iii

https://marcosborges.phd?ref=book_linux_command_line
https://marcosborges.phd?ref=book_linux_command_line

iv

Contents

Copyright i

About Marcos Borges, PhD iii

1 Welcome 1

1.1 Who is this course for? . 1

1.2 How to take this course? . 1

1.3 The Terminal, Command Line, and Shell 2

2 Getting Started with the Terminal 5

2.1 Navigation . 6

2.2 Inspecting Files . 9

2.3 Inspecting Commands . 13

3 Managing Files and Directories 15

3.1 Copy a file or directory . 15

3.2 Move or rename a file or directory . 16

3.3 Create a directory . 17

3.4 Create an empty file . 18

3.5 Remove a file or directory . 18

3.6 Working with hard and soft links . 20

4 Managing IO and Errors 27

4.1 Redirecting the standard output . 27

4.2 Redirecting the standard error . 30

4.3 Redirecting the standard input . 32

4.4 Pipeline . 32

v

5 Searching files 35

5.1 Search for files by name . 36

5.2 Search for files by type . 37

5.3 Search for files by size . 38

5.4 Search for files by owner . 38

5.5 Executing commands with -exec . 39

6 Searching text 41

6.1 Search for a simple word . 42

6.2 Search using anchors . 42

6.3 Search with character classes . 42

6.4 Extended regular expressions . 43

6.5 Counting and file matches . 43

7 Introduction to Bash scripting 45

7.1 Your first Bash script . 45

7.2 Comments . 46

7.3 Variables . 47

7.4 Multi-line variables . 47

7.5 Arrays . 49

7.6 Reading input from the user . 49

7.7 Control flow . 51

7.8 If statements . 51

7.9 Tests and conditions . 52

7.10 For loops . 53

8 This is just the beginning 55

Level up your career in Tech 57

vi

1 Welcome

Welcome to the Linux Command Line course! Whether you’re just starting out or

looking to sharpen your skills, this one-hour course covers the core commands and

tools you need to use the terminal with confidence.

At some point, every engineer or researcher needs to work in the command line.

This course gives you a solid foundation to do just that.

For advanced topics in engineering, AI, or scientific simulations, explore our full

range of courses and books at marcosborges.phd.

1.1 Who is this course for?

This course is designed for engineers, researchers, and developers who have a

basic familiarity with Linux and core computing concepts. No prior experience with

Bash scripting is required.

1.2 How to take this course?

We recommend following along in your own terminal as you progress. The best

way to learn the command line is by using it, experiment with each command, try

variations, and make it part of your workflow. You can follow the course through

the e-book or videos, but consistent, hands-on practice is what builds confidence

and skill.

MarcosBorges.PhD 1

https://marcosborges.phd?ref=book_linux_command_line

1.3 The Terminal, Command Line, and Shell

The Linux command line is often called the terminal, shell, console, or prompt.

While these terms are sometimes used interchangeably, they refer to different

parts of the system.

The terminal or console is essentially a text-based interface used to interact with

the computer. Its origins go way back to the early 1950s with MIT’s Whirlwind I

computer, the first to use a typewriter for input and a printer for output.

By themid-1960s, more advanced display-based terminals like the IBM 2260 began

to emerge. During this era, computers were massive machines known as main-

frames, and users could connect to it remotely via individual terminals.

Figure 1.1: The IBM 2260 display-based terminal.
Credit: Norsk Teknisk Museum.

2 MarcosBorges.PhD

These early terminals were quite simple: just a keyboard and a screen. They didn’t

have the processing power to run programs on their own. Their sole purpose was

to send whatever you typed to the central mainframe and then display the data

they received back on the screen.

Today, the Linux command line provides a powerful interface for interacting with

the computer. Instead of clicking on icons, you type commands into an application

called the terminal. Working behind the scenes, a program known as the shell

interprets your commands, understands your intent, and instructs the computer

to perform the desired actions.

If you’re using Linux ormacOS, the terminal is already available with common Linux

commands. On Windows, install the Windows Subsystem for Linux (WSL). Setup

instructions are available at learn.microsoft.com/windows/wsl.

Figure 1.2: macOS Terminal.

MarcosBorges.PhD 3

https://learn.microsoft.com/windows/wsl

4 MarcosBorges.PhD

2 Getting Started with the Terminal

When you launch the Terminal, you should see a shell prompt similar to this:

borges@linux: ~ $

Let’s begin with the date command, which displays the current date and time:

borges@linux: ~ $ date

Tue Jul 28 08:25:32 CEST 2025

A related command is cal , which displays a calendar for the current month:

borges@linux: ~ $ cal

July 2025

Su Mo Tu We Th Fr Sa

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

INFO-CIRCLE Note

In some cases, the shell prompt will be omitted to simplify the presentation

of commands.

MarcosBorges.PhD 5

2.1 Navigation

These are the most important commands to help you navigate the file system.

Print the current working directory:

pwd

/home/borges

INFO-CIRCLE Note

If you’re using macOS or Windows, the output may differ, so adjust the paths

in this course to match the ones shown on your system. Example on macOS:

pwd

/Users/borges

List the contents of the current directory:

ls

Desktop Documents Downloads Library Movies Music Pictures

List the contents of a specific directory:

ls /home

borges

The ls command also supports options that modify its output format:

-a Show all content, including hidden ones

-l Show the contents in a long listing format

-h With -l, show file size in KB, MB, GB, or TB

-R List subdirectories recursively

6 MarcosBorges.PhD

The -l option displays the contents in a long listing format, showing detailed

information such as file permissions, the number of links, the file owner and group,

file size in bytes, and the last modification date. Additionally, if the permissions

string starts with a d, it indicates that the entry is a directory.

ls -l /home

total 4

drwxr-x--- 6 borges borges 4096 Jul 28 10:25 borges

Permissions Links User Group Size Modification date

To make the file size easier to read, add the -h option:

ls -lh /home

total 4.0K

drwxr-x--- 6 borges borges 4.0K Jul 28 10:25 borges

This next command uses the -a option to show all files, including hidden ones:

ls -alh /home/borges

total 40K

drwxr-x--- 6 borges borges 4.0K Jul 28 08:30 .

drwxr-xr-x 3 root root 4.0K Jul 28 08:30 ..

-rw-r--r-- 1 borges borges 3.7K Mar 31 2024 .bashrc

-rw-r--r-- 1 borges borges 807 Mar 31 2024 .profile

drwx------ 2 borges borges 4.0K Jul 28 10:25 .ssh

The . refers to the current directory, /home/borges in this example, while ..

refers to its parent directory, that is /home . They are not actual files or folders

you create, but are built-in directory references used by the filesystem to navigate.

In Linux, hidden files and directories are represented by a dot at the beginning of

their names, like the file .bashrc and the directory .ssh .

MarcosBorges.PhD 7

Change directory:

borges@linux: ~ $ cd /usr/bin

borges@linux: /usr/bin $

In this example we start in ~ , which refers to the home directory, and move to

/usr/bin , as reflected in the shell prompt.

Here are some useful symbols you can use with the cd command:

~ Home directory

- Previous directory

. Current directory

.. Parent directory

From /usr/bin , let’s navigate to its parent directory:

borges@linux: /usr/bin $ cd ..

borges@linux: /usr $

Now, our current working directory is /usr . Let’s return to the home directory:

borges@linux: /usr $ cd ~

borges@linux: ~ $

From here, we can go back to the previous working directory:

borges@linux: ~ $ cd -

borges@linux: /usr $

Mastering these navigation commands is essential for building confidence

and efficiency when working with the command line. The more you practice

using them, the more natural and intuitive your workflow will become.

8 MarcosBorges.PhD

2.2 Inspecting Files

This section introduces commands for inspecting files in the file system.

Display file content:

cat filename

Display the first 10 lines of a file:

head filename

-n number Show the specified number of lines

Display the last 10 lines of a file:

tail filename

-n number Show the specified number of lines

-f Follow the file and display new lines as they are added

Count lines, words, characters, and bytes in a file:

wc filename

-l, --lines Show the number of lines

-w, --words Show the number of words

-m, --chars Show the number of characters

-c, --bytes Show the number of bytes

MarcosBorges.PhD 9

BOOKMARK Let’s Practice:

1 Display the contents of a text file:

cat /etc/passwd

2 Display the first 5 lines of a file:

head -n 5 /etc/passwd

3 Display the last 2 lines of a file:

tail -n 2 /etc/passwd

4 Count the number of lines, words, and characters in a file:

wc /etc/passwd

32 45 1656 /etc/passwd

Lines

Words

Characters

5 Count only the characters in a file:

wc --chars /etc/passwd

10 MarcosBorges.PhD

View file content:

less filename

less is a program for viewing the contents of text files. When a file spans more

than one screen, it allows scrolling both forward and backward. Commonly used

commands include:

Essential Commands

h Display help menu

q Quit

Movement and Navigation

j Forward one line

k Backward one line

f Forward one window

b Backward one window

d Forward one half-window

u Backward one half-window

g Go to the first window

G Go to the last window

Searching

/term Search forward for term

?term Search backward for term

n Repeat search, same direction

N Repeat search, opposite direction

MarcosBorges.PhD 11

BOOKMARK Let’s Practice:

1 Open a sample text file:

less /etc/services

2 Practice moving, searching, and quitting:

Scrolling: j , k , f , b , d , u

Searching: /term , n , N

Jumping: g , G

Quitting: q

12 MarcosBorges.PhD

2.3 Inspecting Commands

A command can be an executable program, an internal shell command, a shell

function or script, or an alias that can be defined by several commands.

Display command details:

type date

date is /bin/date

type type

type is a shell builtin

Display command location:

which type

type: shell built-in command

which bash

/bin/bash

MarcosBorges.PhD 13

14 MarcosBorges.PhD

3 Managing Files and Directories

3.1 Copy a file or directory

You can copy a specific file or directory using the cp command:

cp source destination

-r Copy directories recursively

-i Prompt before overwrite

-v Verbose output

Copy a file to another directory:

cp /source_dir/myfile /destination_dir/

The file will retain its original name.

Copy a file to another directory and rename it:

cp /source_dir/myfile /destination_dir/new_filename

MarcosBorges.PhD 15

Copy a directory and its content into another directory:

You must use the -r flag to copy directories.

cp -r /source_dir/mydir /destination_dir/

This copies the entire mydir directory and everything within it into destina-

tion_dir.

3.2 Move or rename a file or directory

The command mv is used tomove a file or directory from one location to another,

or to rename a file or directory within the same location. Unlike cp , moving a file

or directory removes it from the source location.

mv source destination

-i Prompt before overwrite

-v Verbose output

Rename a file in the current directory:

mv old_filename.txt new_filename.txt

Move a file to a different directory:

mv myfile.txt /destination_dir/

The file retains its original name.

16 MarcosBorges.PhD

Move a directory to a new location:

mv /source_dir/mydir /destination_dir/

This moves the entiremydir directory and all its contents to destination_dir

3.3 Create a directory

The command mkdir (make directory) is used to create one or more new direct-

ories in the specified location.

mkdir directory_name

-p Create parent directories as needed

-v Verbose output

Create a single directory in the current location:

mkdir projects

Create multiple directories at once:

mkdir scripts docs logs

MarcosBorges.PhD 17

Create a nested directory structure:

Use the -p option to create multiple directories in a path.

mkdir -p project_2025/src/main

This command will successfully create project_2025, then src inside it, and

finallymain inside src.

3.4 Create an empty file

The command touch is primarily used to create a new, empty file.

touch filename

3.5 Remove a file or directory

The command rm (remove) is used to permanently delete files or directories. Use

this command with caution, as deleted files are typically unrecoverable.

rm filename

-r Remove directories recursively

-f Force removal without prompt

-i Prompt before each removal

Remove a single file:

rm unnecessary_file.txt

18 MarcosBorges.PhD

Remove multiple files:

rm log_*.txt temp_file.bak

Remove a directory and its contents:

To remove a directory, the -r (recursive) flag is required.

rm -r old_project_folder/

Forcefully remove a directory without being prompted:

rm -rf very_old_backup/

Exclamation-Triangle Caution

The combination rm -rf is extremely dangerous.

Use with extreme caution!

MarcosBorges.PhD 19

3.6 Working with hard and soft links

In Linux-based systems, links are used to create references or pointers to files or

directories, allowing a single item to be accessed via multiple names or locations.

We have two distinct kinds of links:

Hard link is a second name for the same file data on disk. If one name is deleted,

the other still works.

Soft link (symbolic link) is a shortcut that points to another file or directory. If the

target is deleted, the link breaks.

Soft links

~/proj/venv/python

/usr/bin/python3

Hard links

/usr/bin/python3.14

/bin/python3.14

inode

Data on disk

Create a hard link:

ln target link_name

Hard links can only be created for files, not directories.

Create a symbolic (soft) link:

ln -s target link_name

Soft links can be created for files and directories.

20 MarcosBorges.PhD

BOOKMARK Let’s Practice:

1 Create a playground directory:

mkdir /tmp/playground

2 Change to the playground directory:

cd /tmp/playground

3 Create multiple directories following the example:

dir1

dir2

|---- dir3

dir4

|---- dir5

|---- dir6

folder

mkdir dir1 dir2 dir4 folder

mkdir dir2/dir3 dir4/dir5

mkdir dir4/dir5/dir6

MarcosBorges.PhD 21

You can create all directories at once using a single command:

mkdir -p dir1 dir2 dir2/dir3 dir4 dir4/dir5/dir6 folder

4 Create files inside dir3:

dir2

|---- dir3

|---- file_1.txt

|---- file_2.txt

|---- file_3.txt

touch dir2/dir3/file_1.txt

touch dir2/dir3/file_2.txt

touch dir2/dir3/file_3.txt

5 Recursively list all directories and files:

ls -R

22 MarcosBorges.PhD

6 Copy /etc/passwd into dir6/file_4.txt:

dir4

|---- dir5

|---- dir6

|---- file_4.txt

cp /etc/passwd dir4/dir5/dir6/file_4.txt

7 Create a symbolic link to file_4.txt:

dir4

|---- dir5

|---- dir6

|---- file_4.txt

soft_link.txt -> dir4/dir5/dir6/file_4.txt

ln -s dir4/dir5/dir6/file_4.txt soft_link.txt

8 List files in the current directory with detailed info:

ls -l

MarcosBorges.PhD 23

9 Create a hard link to file_4.txt:

dir4

|---- dir5

|---- dir6

|---- file_4.txt

hard_link.txt

ln dir4/dir5/dir6/file_4.txt hard_link.txt

10 Remove the file_4.txt file:

dir4

|---- dir5

|---- dir6

|---- file_4.txt

rm dir4/dir5/dir6/file_4.txt

11 List files in the current directory with detailed info:

ls -l

Notice that the symbolic link soft_link.txt is now broken, while the

hard link hard_link.txt remains fully accessible.

24 MarcosBorges.PhD

12 Attempt to display the content of the soft_link.txt file:

cat soft_link.txt

The file no longer exists because the link is broken.

13 Display the first 10 lines of hard_link.txt file:

head hard_link.txt

14 Rename the hard link hard_link.txt to output.txt:

mv hard_link.txt output.txt

15 Remove the soft_link.txt file:

rm soft_link.txt

MarcosBorges.PhD 25

16 Recursively list all directories and files:

ls -R

dir1

dir2

|---- dir3

|---- file_1.txt

|---- file_2.txt

|---- file_3.txt

dir4

|---- dir5

|---- dir6

folder

output.txt

26 MarcosBorges.PhD

4 Managing IO and Errors

This section covers commands for controlling the standard input, output, and error

of processes, making it easier to manage and manipulate data.

In Linux, every process automatically starts with three data streams:

1. Standard input (stdin): the channel through which a program receives data,

usually from the keyboard or a file.

2. Standard output (stdout): where a program sends its results, usually shown

on the terminal.

3. Standard error (stderr): used to display error messages.

stderr

stdout
Process

stdin

A process is simply a program that is running on your computer. When you start an

application or run a command, the system creates a process for it, which includes

the program’s code, its current activity, and the resources it needs, like memory or

CPU time. In short, a process is the active, running instance of a program.

4.1 Redirecting the standard output

To redirect the standard output of a process to a file instead of displaying it on the

screen, use the redirection operator > followed by the file name.

MarcosBorges.PhD 27

For example, we can redirect the output of the cal -m July command to a file

instead of displaying it on the screen:

cal -m July > /tmp/calendar.txt

Then, we can display the file content:

cat /tmp/calendar.txt

July 2025

Su Mo Tu We Th Fr Sa

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

Now, let’s see what happens if we type the command incorrectly:

cal -m month > /tmp/calendar.txt

cal: month is neither a month number (1..12) nor a name

We get an error message because the command expects either a valid month

name or a number between 1 and 12, not the term month.

Now, let’s display the file content:

cat /tmp/calendar.txt

The file is empty because the command cal -m month produced an error

and didn’t generate the calendar as expected.

28 MarcosBorges.PhD

As you may notice, the redirection operator > overwrites the file, discarding its

previous data. If you want to preserve the existing data, you can use the append

operator >> , which adds new data to the end of the file.

Overwriting the file with the July calendar:

cal -m July > /tmp/calendar.txt

Appending the file with the August calendar:

cal -m August >> /tmp/calendar.txt

Displaying the contents of the file:

cat /tmp/calendar.txt

July 2025

Su Mo Tu We Th Fr Sa

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

August 2025

Su Mo Tu We Th Fr Sa

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

MarcosBorges.PhD 29

4.2 Redirecting the standard error

Redirecting the standard error is less intuitive than redirecting the standard out-

put. Internally, the shell refers to the standard input, output, and error using file

descriptors 0, 1, and 2 respectively:

• File descriptor 0: Standard input (stdin)

• File descriptor 1: Standard output (stdout)

• File descriptor 2: Standard error (stderr)

Let’s try a command that generates a normal output and an error at the same time:

ls myfile /usr

ls: cannot access 'myfile': No such file or directory

/usr:

bin games include lib libexec local sbin share src

Redirect the output to a file and the error to the terminal:

ls myfile /usr > /tmp/output.txt

ls: cannot access 'myfile': No such file or directory

Try viewing the contents of the output file to see the results.

Redirect the output to the terminal and the error to a file:

ls myfile /usr 2> /tmp/output.txt

/usr:

bin games include lib libexec local sbin share src

30 MarcosBorges.PhD

Redirect both the output and the error to a file:

ls myfile /usr &> /tmp/output.txt

There is also a traditional way to do it:

ls myfile /usr > /tmp/output.txt 2>&1

Here we perform two redirections: First we redirect the standard output to

a file, then we redirect the standard error (file descriptor 2) to the standard

output (file descriptor 1).

Discard the standard error:

ls myfile /usr 2> /dev/null

/usr:

bin games include lib libexec local sbin share src

The /dev/null file is a special device that acts like a bit bucket or black hole.

Any data written to it is immediately discarded. It is a virtual device with no

physical storage, commonly used to suppress command output and errors,

create empty files, or provide an empty input stream to programs.

MarcosBorges.PhD 31

4.3 Redirecting the standard input

Standard input redirection allows a command to receive data from a file or variable

instead of the keyboard, using the < operator.

Let’s create a simple text file:

printf "Zucchini\nApple\nCherry\n" > /tmp/items.txt

The printf command is used to format and print data. In the example

above, we redirect the standard output to a file.

Redirect the standard input from a file:

sort < /tmp/items.txt

Apple

Cherry

Zucchini

4.4 Pipeline

A pipeline allows you to use the pipe operator | to send the standard output of

one command as the standard input to another command.

Let’s display some data and pass it through a pipeline to sort the output:

printf "Zucchini\nApple\nCherry\n" | sort

Apple

Cherry

Zucchini

32 MarcosBorges.PhD

Now, let’s sort some data and use a pipeline to remove duplicates:

printf "Red\nBlue\nYellow\nBlue\nYellow\nRed" | sort | uniq

Blue

Red

Yellow

The uniq command reports or filters out repeated lines in a file. It only

works on sorted input.

Here’s an example of filtering by the specific term python:

ls /usr/bin | grep python

pybabel-python3

python3

python3.14

The grep command is used for searching text patterns in files. Don’t worry

about understanding everything for now, as we will explore it in more detail

in later chapters.

Explore the docs for each command. We have only scratched the surface!

With more practice you will see how redirection is used for solving real problems,

andhowstandard input, output, and error are at the core of nearly every command-

line tool.

MarcosBorges.PhD 33

34 MarcosBorges.PhD

5 Searching files

The find command is a powerful tool for searching files and directories based on

their name, type, permissions, date, ownership, size, andmore. It can also execute

commands on the results, making it very flexible.

find [path] [expression]

Common paths

/ Root directory (entire system)

. Current directory

~ Home directory

Common expressions

-name Filter by file name

-type d Filter by directories

-type f Filter by regular files

-type l Filter by symbolic links

-user Filter by owner

-group Filter by group

-size Filter by file size

Sizes

c Bytes

k Kilobytes

M Megabytes

G Gigabytes

MarcosBorges.PhD 35

5.1 Search for files by name

Searching for any regular file named bash:

find /usr/ -name "bash"

Searching for files ending with the term bash:

find /usr/ -name "*bash"

Searching for files starting with the term bash:

find /usr/ -name "bash*"

Searching for files containing the term bash:

find /usr/ -name "*bash*"

Searching for files with a .txt extension:

find /usr/ -name "*.txt"

36 MarcosBorges.PhD

5.2 Search for files by type

Searching for directories:

find /usr/ -type d

Searching for directories named linux:

find /usr/ -type d -name "linux"

Searching for regular files:

find /usr/ -type f

Searching for .txt files with names starting with bash:

find /usr/ -type f -name "bash*.txt"

Searching for symbolic links:

find /usr/ -type l

Searching for symbolic links named python3:

find /usr/ -type l -name "python3"

MarcosBorges.PhD 37

5.3 Search for files by size

Searching for files larger than 10 Megabytes:

find /usr/ -size +10M

Searching for files smaller than 1 Kilobyte:

find /usr/ -size -1k

5.4 Search for files by owner

Searching for files owned by your user:

find ~ -user "$(whoami)"

The whoami command returns your username. To run a command inside a

string we use $(command) .

38 MarcosBorges.PhD

5.5 Executing commands with -exec

The -exec option allows you to run a command on each file found. This makes

find much more powerful. The syntax is:

find [path] [expression] -exec command {} \;

The {} is replaced by the current file, and the sequence must end with \; .

Examples:

Listing details of all .txt files:

find ~ -name "*.txt" -exec ls -l {} \;

Printing the first line of each .txt file:

find ~ -name "*.txt" -exec head -n 1 {} \;

Removing empty files (safe to try in a test directory):

find ./testdir -type f -empty -exec rm {} \;

Exclamation-circle Warning

This command is safe because of the -empty parameter.

When using -exec rm , be extra careful not to delete important files.

MarcosBorges.PhD 39

40 MarcosBorges.PhD

6 Searching text

The grep command is used to search text inside files using patterns and regular

expressions. It is one of the most common tools for quickly finding matching lines

in logs, source code, or any other text file.

grep [options] pattern [file...]

Common options

-i Ignore case (case-insensitive search)

-r Search recursively in directories

-n Show line numbers of matches

-v Invert match (show non-matching lines)

-E Use extended regular expressions

-l Show only names of files with matches

-c Count the number of matches

Basic regular expressions

^word Match lines starting with word

word$ Match lines ending with word

. Match any single character

.* Match zero or more of any character

[abc] Match one character: a, b or c

[0-9] Match any digit

word1|word2 Match either word1 or word2

MarcosBorges.PhD 41

6.1 Search for a simple word

Searching for the word error in a file:

grep "error" logfile.txt

Ignoring case (matches error, Error, ERROR, etc.):

grep -i "error" logfile.txt

6.2 Search using anchors

Searching for lines starting with root:

grep "^root" /etc/passwd

Searching for lines ending with bash:

grep "bash$" /etc/passwd

6.3 Search with character classes

Searching for lines that contain a number:

grep "[0-9]" data.txt

Searching for lines containing cat, bat, or hat:

grep "[cbh]at" words.txt

42 MarcosBorges.PhD

6.4 Extended regular expressions

With -E we can use more advanced patterns.

Searching for either dog or cat:

grep -E "dog|cat" animals.txt

Searching for words ending with ing:

grep -E "[a-zA-Z]+ing" notes.txt

6.5 Counting and file matches

Counting the number of matches for the word error:

grep -c "error" logfile.txt

Showing only the names of files containing the wordmain:

grep -rl "main" ~/projects/

MarcosBorges.PhD 43

44 MarcosBorges.PhD

7 Introduction to Bash scripting

A Bash script is a text file containing commands that are executed in sequence.

Scripts are essential for system administration, allowing you to automate tasks,

create simple programs, and combine existing commands into efficient, reusable

workflows.

7.1 Your first Bash script

1 Create a script file using nano or your favorite code editor:

nano /tmp/script.sh

2 Copy and paste the content below, and save:

#!/usr/bin/env bash

A simple script

echo "Hello, world!"

The first line, known as the shebang, specifies Bash as the interpreter for the

script. The second line is a comment. The third line uses the echo command

to print the specified string to the standard output.

MarcosBorges.PhD 45

3 Make the file executable:

To run a bash script correctly, you must ensure it has execution permission.

For that, we use the chmod command (short for change mode), which is a

fundamental Linux command used to control access to files and directories.

Close the nano editor and set the execution permission to the script:

chmod +x /tmp/script.sh

4 Run the script:

bash /tmp/script.sh

You’ve done great work! With a little more creativity, you’ll be able to create

incredible things using Bash scripting.

7.2 Comments

Comments help explain the purpose of certain lines. They should only be used to

explain less obvious parts of the code.

This is a comment!

Comments start with a hash (#)

#

Something important here! Albert Einstein

46 MarcosBorges.PhD

7.3 Variables

Variables are used to store values. No spaces are allowed around the equal sign.

NAME="Alice"

CITY="Paris"

echo "${NAME} lives in ${CITY}"

Use ${VAR_NAME} to access the value of a variable. Always quote variables

like "${VAR_NAME}" to avoid unexpected word splitting.

7.4 Multi-line variables

You can assignmulti-line text to a variable using the here-document syntax, which

allows you to embed a block of text or commands directly within a script.

Below is an example of how you can define a multi-line variable.

Copy and paste this into the terminal:

TEXT="$(cat << EOF

The current directory is: ${PWD}

You are logged in as: $(whoami)

EOF

)"

echo "${TEXT}"

By default the shell performs parameter expansion, command substitution inside

the here-document. For example, ${PWD} expands to the current directory and

$(whoami) is replaced by the current user.

MarcosBorges.PhD 47

If you need to preserve the literal contents disabling expansions and substitutions,

quote the opening delimiter << 'EOF' , so the text is stored or printed exactly as

written.

Below is an example of how to define a multi-line variable without expansion. Pay

attention to the details and compare it with the previous (unquoted) example to

observe the difference.

Copy and paste the following into the terminal:

TEXT="$(cat << 'EOF'

Example without expansion using quoted 'EOF'

The current directory is: ${PWD}

You are logged in as: $(whoami)

EOF

)"

echo "${TEXT}"

Using << 'EOF' keeps the text literal. Without the quotes, variables inside

will be expanded.

48 MarcosBorges.PhD

7.5 Arrays

Bash supports indexed arrays, which provide away to storemultiple data elements

that can be accessed by their position (index), starting from 0. Check the example

below, and you’ll understand it easily.

Copy and paste this into the terminal:

Enable KSH_ARRAYS in Zsh to make array indexing start at 0

setopt KSH_ARRAYS

COLORS=("red" "green" "blue")

echo "Color index 0: ${COLORS[0]}"

echo "Color index 1: ${COLORS[1]}"

echo "Color index 2: ${COLORS[2]}"

7.6 Reading input from the user

The command read is used to capture input from the user and store it in a vari-

able, in this example USERNAME . When this command runs, the script pauses and

waits for the user to type something and press Enter. Whatever the user types is

then assigned as the value of the variable, allowing the script to use that input later

in the program.

echo "Enter your name:"

read USERNAME

echo "Hi ${USERNAME}!"

MarcosBorges.PhD 49

BOOKMARK Let’s Practice:

1 Create a new script:

nano /tmp/calendar.sh

2 Copy and paste the content below, and save:

#!/usr/bin/env bash

echo "Calendar Display Utility"

echo

echo "Please enter the month number (1-12):"

read MONTH

Print the calendar for the month

cal -m "${MONTH}"

3 Make the file executable:

chmod +x /tmp/calendar.sh

4 Run the script:

bash /tmp/calendar.sh

50 MarcosBorges.PhD

7.7 Control flow

Control flow in Bash scripting is essential for making decisions and performing re-

petitive tasks. It determines the order in which commands are executed based on

conditions.

Mastering control flow allows a script to move beyond simple sequential com-

mands to dynamic and powerful automation.

7.8 If statements

The if statement is a control structure that allows to execute one or more instruc-

tions based on the evaluation of a command or an expression called a condition.

Here is an example of if statement:

if [["CONDITION"]]; then

"INSTRUCTIONS"

fi

Now, a more complete example:

NAME="Alice"

if [["${NAME}" = "Alice"]]; then

echo "Welcome, Alice!"

else

echo "You are not Alice."

fi

MarcosBorges.PhD 51

7.9 Tests and conditions

We have several ways to perform tests and conditional checks in Bash. Below are

the most commonly used tests:

[[-f FILE]] True if file exists and is a regular file

[[-d DIR]] True if directory exists

[[-z STR]] True if string is empty

[[-n STR]] True if string is not empty

[[NUM1 -eq NUM2]] True if numbers are equal

[[NUM1 -lt NUM2]] True if NUM1 is less than NUM2

[[NUM1 -gt NUM2]] True if NUM1 is greater than NUM2

Check if a file exists:

if [[-f "myfile.txt"]]; then

echo "File exists"

else

echo "File not found"

fi

Compare two numbers:

if [[1 -lt 2]]; then

echo "Are you sure?"

fi

52 MarcosBorges.PhD

7.10 For loops

A for loop allows a block of code to be executed repeatedly. For example, we can

use it to print all the elements of an array like this:

COLORS=("red" "green" "blue")

for COLOR in "${COLORS[@]}"

do

echo "Color: ${COLOR}"

done

Here is another way to do it using loop over strings:

for COLOR in "red" "green" "blue"

do

echo "Color: ${COLOR}"

done

You can also loop over a range:

for i in {0..3}

do

echo "Number: ${i}"

done

MarcosBorges.PhD 53

54 MarcosBorges.PhD

8 This is just the beginning

In the preceding chapters, we demystified the Linux Command Line, giving you the

power to manipulate files and automate tasks.

The only thing left to do now is practice, practice, and practice.

Even though we covered a lot of ground in our adventure, we barely scratched the

surface as far as the command line goes. There are still thousands of command

line programs left to be discovered and enjoyed.

This is just the beginning of your journey. May the Force be with you!

MarcosBorges.PhD 55

56 MarcosBorges.PhD

Level up your career in Tech

Get notified when I publish new content.

Join my free newsletter packed with actionable insights on AI, Machine Learning,

Target Tracking, and Sensor Fusion for Autonomous Navigation.

Gain access to exclusive tips and strategies I don’t share anywhere else, and learn

the skills top employers are hiring for.

Subscribe for free at marcosborges.phd.

MarcosBorges.PhD 57

https://marcosborges.phd?ref=book_linux_command_line

	Copyright
	About Marcos Borges, PhD
	Welcome
	Who is this course for?
	How to take this course?
	The Terminal, Command Line, and Shell

	Getting Started with the Terminal
	Navigation
	Inspecting Files
	Inspecting Commands

	Managing Files and Directories
	Copy a file or directory
	Move or rename a file or directory
	Create a directory
	Create an empty file
	Remove a file or directory
	Working with hard and soft links

	Managing IO and Errors
	Redirecting the standard output
	Redirecting the standard error
	Redirecting the standard input
	Pipeline

	Searching files
	Search for files by name
	Search for files by type
	Search for files by size
	Search for files by owner
	Executing commands with -exec

	Searching text
	Search for a simple word
	Search using anchors
	Search with character classes
	Extended regular expressions
	Counting and file matches

	Introduction to Bash scripting
	Your first Bash script
	Comments
	Variables
	Multi-line variables
	Arrays
	Reading input from the user
	Control flow
	If statements
	Tests and conditions
	For loops

	This is just the beginning
	Level up your career in Tech

